
A SEISMIC SHIFT IN
APPLICATION SECURITY
HOW TO INTEGRATE AND AUTOMATE SECURITY IN THE DEVOPS LIFECYCLE

WHAT'S INSIDE?
INTRODUCTION

THE TRADITIONAL APPLICATION SECURITY WORKFLOW

WHY “SHIFT LEFT” ISN’T ENOUGH

THE COMING SEISMIC SHIFT

INTEGRATED AND AUTOMATED END-TO-END SECURITY
 » The new security paradigm: Continuous security testing

CONCURRENT DEVOPS
 » Benefits of an integrated approach

 » Concurrent DevOps with GitLab

ABOUT GITLAB

INTRODUCTION
Application Security Testing has been around for a long time, yet applications

continue to be a lucrative target for attackers. CIO magazine recently summarized the

top attacks in, “What is a cyber attack?” Recent examples show disturbing trends.”

Four of the top six attacks were application based. One of the the most infamous,

WannaCry, exploited a vulnerability in Microsoft Windows using code that had been

secretly developed by the United States National Security Agency. Microsoft had

already patched the vulnerability a few weeks before, but many customers had not

updated their systems. Similarly, the Equifax attack was targeted at their website

application by exploiting a known vulnerability in common third-party code (Apache

Struts2). The flaw made it possible for the attacker to send malicious commands that

enabled access to files with sensitive data.

These attacks happen despite significant investments in application security. It’s

logical to conclude that current approaches are outdated and inefficient. Fortify, an

early leader in application security testing, was founded in 2002, sixteen years ago,

well before agile and DevOps flourished and when cloud computing was a novelty.

Even relative newcomers such as Contrast Security and Checkmarx do not go far

enough to change the inefficient application security workflow—they can’t without

being tightly integrated into the development workflow itself. Today, that means

stitching together an elaborate patchwork of DevOps and application security tools,

each focused on a narrow element of the software development lifecycle (SDLC).

Everyone claims to “shift left,” but how far left? And is that enough? Automation and

Concurrent DevOps have made Agile development capable of lightning speed and

better quality code at the same time. Can we apply the same principles to application

security?

Security can be expensive, and thus an enterprise may often choose to scan

only critical applications, or test applications infrequently, allowing introduced

vulnerabilities to go unaddressed (unpatched) for some time. Security requires costly

and scarce security professionals to run the test, interpret the findings, and triage

the results. Application security is least understood, and often takes a back seat to

perimeter and endpoint security.

Likewise, there is a misconception with cloud computing that the cloud provider takes

care of ALL the security. While cloud providers have indeed taken on securing most

layers of the OSI infrastructure stack, they lack insight inside the application, and

the context needed to identify and protect application security vulnerabilities. As a

result of these challenges and misconceptions, application security testing is largely

neglected, and when there is coverage, it’s riddled with holes.

https://www.csoonline.com/article/3237324/cyber-attacks-espionage/what-is-a-cyber-attack-recent-examples-show-disturbing-trends.html
https://www.csoonline.com/article/3227906/ransomware/what-is-wannacry-ransomware-how-does-it-infect-and-who-was-responsible.html
https://www.csoonline.com/article/3223229/security/equifax-says-website-vulnerability-exposed-143-million-us-consumers.html
https://about.gitlab.com/concurrent-devops/?utm_medium%3Dother%26utm_source%3Dpdf%26utm_campaign%3Dsecuritywhitepaper&sa=D&ust=1542315908507000&usg=AFQjCNG3EcXIy8_dMwDHyTaN4yXUD0QUww
https://www.forbes.com/sites/tomgroenfeldt/2014/10/31/gartner-calls-for-self-healing-apps-warateks-already-there/#3213ead25055
https://www.forbes.com/sites/tomgroenfeldt/2014/10/31/gartner-calls-for-self-healing-apps-warateks-already-there/#3213ead25055

THE TRADITIONAL APPLICATION
SECURITY WORKFLOW
Traditional application security testing has been targeted to security professionals and

is regarded as a separate process from development. With this approach, security is a

step at the end of the development lifecycle where a security professional runs tests to

identify vulnerabilities, vets each vulnerability for false positives, prioritizes them by

risk, and triages for remediation. With security acting as a gate for code deployment,

it’s sometimes perceived as a roadblock to innovation by developers and engineers.

The intent is to test all of the code but often the volume is too high, the tests may take

too long to run, and there’s a shortage of security analysts to triage, prioritize, and

validate results.

Because the effort is siloed from the development workflow, it may be some time

before the developer learns of the needed remediation. By then, they have moved on

to another project and must take some time to re-engage. This separation and delay

creates friction in the process, with many trade-offs required.

It’s important to strike a balance between managing risk and business agility. You

know the low-risk approach would be to test everything, all of the time. But that’s not

practical given the high cost of application security testing tools or services and the

scarcity of security professionals. Nor is it prudent to minimize testing to only that

which is required for regulatory compliance—Target was compliant and passed their

audit but was still famously hacked. Attackers look for the weakest link, like internal

applications and unpatched software.

Trade-offs in a traditional Application Security model

You want to test everything
but you...

So you may... Even though...

Can’t afford to test all of your
code or have everyone use
scanning tools.

Only test externally-facing
apps because they have
higher risk or only test major
releases.

Hackers can traverse laterally
across your enterprise. They
look for the weakest link.

Lack security analysts to
validate results, prioritize and
triage.

Rely on infrequent external
penetration testing that
meets minimum compliance
requirements.

Exploits change all the time.
Penetration testing only tests
a snapshot in time.

Have already found more
vulnerabilities than you have
time to fix.

Focus on one testing method
alone.

Different types of scans are
best at finding different types
of vulnerabilities.

WHY “SHIFT LEFT”
ISN’T ENOUGH

In an effort to improve application security testing, the new chant has been “shift left”

to remove more vulnerabilities earlier. The idea is to empower the developers to find

and fix vulnerabilities earlier in the software development lifecycle, when changes

are less costly and more timely. But shifting left must go beyond simply providing a

lightweight static analysis in the development environment (IDE). A spell-check-like

functionality is a great idea to help developers find vulnerabilities, and it can help

educate them on how to avoid these same mistakes again and again. But it’s just a tiny

step in the right direction.

Several vendors offer “lite” static testing with a plug-in to the developer’s IDE. The

intent is to show developers vulnerable coding practices while they code, so they can

learn how to avoid these mistakes, and remediate them immediately, without leaving

their native environment. This is a start, yet shortcomings include:

 » The cost, maintenance, integration, and user interface for yet another

security product.

 » Plug-ins are available for only a few IDEs.

 » Security results are not always intuitive to developers.

 » Vulnerabilities can be easily dismissed with no automated capture, only to

resurface later (to be dealt with yet again) in subsequent testing.

Application Security silos require a web of integrations

Application Security silos require a web of integrations.

CODE COMMIT BUILD TEST RELEASE DEPLOY OPERATE

SAST lite in the IDE Static Analysis

Software Composition Analysis

Dynamic Analysis

Manual Penetration Testing

APIs for Integration

IDE BUG TRACKING BUILD SYSTEMS GRC

SIEM

WAF

Using this approach, the bulk of application security remains a separate workflow. Full

static scans and dynamic scans are not possible in the IDE; independent security tools

are simply unable to perform dynamic testing on code before it is merged. Interactive

application security testing (IAST) is intended to bridge that gap, with dynamic

security scans triggered by your already-planned user and integration testing. While

this occurs further into the SDLC, once there is a working application, it is still only an

incremental improvement.

Traditional DAST without GitLab

Traditional security testing creates process friction. Security runs the scans but must convey findings to
developers to remediate.

THE COMING
SEISMIC SHIFT
What’s needed is a seismic shift left. Traditional application security tools cannot

deliver this because they were built for traditional development methods and struggle

to stay relevant even in today’s Agile environment. DevOps compounds that challenge.

Traditional tools struggle with cloud native environments. Scanning containers is often

not covered by traditional application security testing tools (leading to yet another

tool purchase and integration requirement!). In addition, with iterative development

cycles where code may be pushed to production, weekly, daily, or hourly, a security

gate at the end of the SDLC, or even in a test environment, just doesn’t work. So how

do you change that? A seismic shift is needed.

Repository

Code commit Merge to Master Deploy

CI CD Test
environment

DAST / IAST
report

Security Team

Dismiss or
Create issue

Ticketing systemDevelopment
Team

INTEGRATED AND AUTOMATED
END-TO-END SECURITY
A seismic shift left can only occur by integrating so tightly into the SDLC that code

changes are automatically tested with every code commit and results are presented

to the developer for instant remediation. The workflow must be a single one, not

a separate silo where half of the application security time and budget is spent

tracking vulnerabilities for their severity, potential risk to the organization, and

time to remediation. By integrating with the CI/CD process, the tracking becomes a

by-product of development steps already being taken, and the focus can be on the

remediation itself.

Development teams must be seen as the chief users and buyers of application security

tools, with security as a co-funder. Even if developers’ performance is not measured

by delivering secure code, they should be tasked with speed and time to market. If

security is a bottleneck to deployment, then the application development leadership

will certainly care about security, even if the individual engineer does not.

Checkmarx has been on a path to woo developers. They are integrating into the SDLC

via APIs and focusing more on what developers need as users. Their SAST can perform

incremental scanning to speed test cycles by testing only the code that has changed;

their IAST approach is meant to bring DAST earlier into the cycle and make it more

iterative. However, even Checkmarx is limited in their ability to help enterprises truly

shift left, because they remain an independent security silo. Their SDLC integration

requires a patchwork of APIs and plug-ins. To automate the scan, a DevOps tool

like Jenkins must be configured. Although their incremental scanning can speed up

testing, it requires use of a sophisticated hashing routine to determine what code has

changed.

Alternatively, when the application security tool and the source control tool are the

same, there is no need to identify incremental new code by looking from the outside:

the code repo can show definitively what has changed. The developer’s actions of

committing code to the repository kicks off security scans, then the CI/CD component

spins up a review app for the developer to test their code interactively before it is

merged. Dynamic scans are performed by the developer on the piece of code they are

changing, before it is merged with other code. Security is automated and embedded

into a development tool they already know (and love!).

https://checkmarx.atlassian.net/wiki/spaces/KC/pages/126277949/Configuring+a+CxSAST+Scan+Action+v8.4.1
https://checkmarx.atlassian.net/wiki/spaces/KC/pages/46661825/Managing+Projects+and+Running+Scans?showComments=true&showCommentArea=true

The CI/CD review app enables dynamic scanning to happen before the code leaves the individual developer’s
workspace.

To achieve a seismic shift left, application security must be part of the development

workflow and integrated into the entire SDLC, from source control to CI/CD, and even

application monitoring.

With security embedded into the development workflow, developers can get feedback

on the security of their code as they are working, they can remediate in real time, and

free up the security team’s time to focus on monitoring issues, assessing risk, and

solving vulnerabilities that can’t be fixed by the developer. By continuously testing

even small, incremental code changes, an avalanche of work is avoided at the end of

the SDLC.

Keeping it simple is key. Identifying a false positive can be very subjective, and risk

assessment is mostly a human process. Security features should not automatically

block a pipeline or prevent a new version from being released to production.

Reports are interactive, actionable, and iterative. When triaging vulnerabilities,

users can confirm them (creating an issue to solve the problem), or dismiss them (in

the case of false positives). This information will be collected to improve the signal-to-

noise ratio that the tool could provide in future executions.

Reports need to be easy to use, and require the minimum amount of effort

from users. Otherwise, security checks will likely be disabled or not considered at

all, missing their primary goal. Unlike traditional application security tools primarily

intended for use by security pros, GitLab’s security capabilities are built into the CI/

THE NEW SECURITY PARADIGM:
CONTINUOUS SECURITY TESTING

GitLab enables interactive DAST testing before the merge

GitLab
Repository

Dismiss or
create issue

Code commit Merge to Master Deploy

GitLab CI GitLab CD

GitLab DAST
on Pipeline Rpt

Review appDeveloper

CD workflow where developers live. We empower them to identify vulnerabilities and

remove them early, while at the same time providing security pros with a dashboard to

view items not already resolved by the developer, across projects. This vulnerability-

centric approach helps each role deal with items that are most important and most

relevant to their scope of work.

CONCURRENT
DEVOPS
Application security is an integral part of Concurrent DevOps, the new way of thinking

about how we create and ship software. Rather than organizing work in a sequence of

steps and handoffs, which creates silos, working concurrently unleashes collaboration

across the organization. In a concurrent world, people have visibility into the entire

workflow, process, and security and compliance across the DevOps lifecycle.

Concurrent DevOps makes it possible for Product, Development, QA, Security, and

Operations teams to work at the same time. Teams work concurrently and review

changes together before pushing to production. Everyone can contribute to a single

conversation across every stage, and developers see all relevant security and ops

information for any change.

Traditional DevOps workflow vs. Concurrent Devops
workflow:

Traditional software development is typically sequential, not unlike how documents are developed using
Microsoft Word. Concurrent DevOps is different; teams can collaborate and contribute to new features early and
often in the lifecycle, dramatically shortening cycle times and accelerating delivery.

Under a Concurrent DevOps model, traditionally disparate teams that work on

software development and delivery work together from a single application, sharing a

single codebase, datastore, installation, interface, overview, and workflow. Concurrent

DevOps gives all stakeholders the real-time visibility, efficiency, and governance

needed to ship secure code at the speed the business demands. For security

Microsoft Word Google Docs

One person edits at a time

Multiple copies (hand offs)

Version conflicts

Waiting for feedback

Sequential

Many people edit at the same time

One copy

No conflicts

Realtime feedback

Concurrent

professionals, this model embeds automated security, code quality, vulnerability

management, and policy enforcement across the SDLC to keep things moving quickly

while remaining compliant. Every important activity is logged in a single audit log that

covers the entire DevOps lifecycle—always on, accessible, and accurate—to allow tight

control over how code is deployed, eliminating guesswork.

Balancing business velocity with security is possible when application security testing

is built into the DevOps workflow. Every merge request is scanned for vulnerabilities

in your code and that of its dependencies. Under the Concurrent DevOps model,

organizations can develop and operate with confidence, knowing that security and

compliance are built in.

Benefits to the business
 » Every piece of code is tested upon commit, without incremental cost.

 » One source of truth for both development and security promotes

collaboration and empowers the developer to identify vulnerabilities within

their own workflow.

 » Vulnerabilities can be efficiently captured as a by-product of software

development.

 » A single tool also reduces cost of buying, integrating, and maintaining point

solutions.

Benefits to the security organization
 » Developers can remediate in real time so security professionals can focus on

the vulnerabilities that cannot be easily fixed by the developer.

 » An integrated security dashboard displays a roll-up of unresolved

vulnerabilities and metrics overall.

 » Security can drill-down from the dashboard to see the code itself, and make

comments, simplifying collaboration with the developer. BENEFITS OF AN
INTEGRATED APPROACH Real life stories

The benefits of Concurrent DevOps are already being realized by companies across the globe.

Paessler AG
Ramped up to 4x more releases by eliminating cumbersome, sequential processes.
Read their story.

“Every branch gets tested, it’s built into the pipeline. As soon as you commit your code, the whole
process kicks off to get it tested. The amount of effort involved in actually getting to the newest
version that you’re supposed to be testing, whether you’re a developer or a QA engineer, is
minimized immensely.”
 — Greg Campion, Sr. Systems Engineer

Axway
Realizes a 26x faster DevOps lifecycle with more intelligent automation and developer self-
service. Read their story.

“Our legacy toolchain was complex, disconnected, and difficult to manage and maintain. Now,
developers are empowered to self-serve with minimal guidelines.”
— Eric Labourdette, Head of Global R&D Engineering Services

https://about.gitlab.com/customers/paessler/?utm_medium%3Dother%26utm_source%3Dpdf%26utm_campaign%3Dsecuritywhitepaper&sa=D&ust=1542316028830000&usg=AFQjCNEhAGx5obriEeN4ezQQRUeWPrmOog
https://about.gitlab.com/customers/axway/?utm_medium%3Dother%26utm_source%3Dpdf%26utm_campaign%3Dsecuritywhitepaper&sa=D&ust=1542316028830000&usg=AFQjCNFo6nxBvBh2uv6T6myz_JyPiXgwLQ

Today, only GitLab eliminates the need to manually configure and integrate multiple

tools for each project. DevOps teams can start immediately and work concurrently

to radically compress time across every stage of the DevOps lifecycle. GitLab is the

only vendor offering a single application for the end-to-end application development

lifecycle, including automated application security testing in the pipeline.

Continuous security testing within CI/CD
Using GitLab, every merge request is automatically tested using static application

security testing (SAST), dynamic application security testing (DAST), dependency

scanning, container scanning and license management. GitLab’s built-in security

tests scan the application source code and binaries to spot potential vulnerabilities -

without added tools. Developers can remediate from the merge request, and security

professionals can evaluate vulnerabilities in context, dismissing or creating an issue in

one click.

Similarly, GitLab’s DAST capabilities allow for dynamic scanning earlier than previously

possible by leveraging the review app generated by the built-in CI/CD. This allows

known runtime vulnerabilities to be reported to the developer in-line with every

merge request.

CONCURRENT DEVOPS
WITH GITLAB

Sample security findings within the GitLab CI/CD pipeline.

Have questions about GitLab? Contact us!

Start Your Free Trial

https://www.google.com/url?q=https://about.gitlab.com/sales/?utm_medium%3Dother%26utm_source%3Dpdf%26utm_campaign%3Dsecuritywhitepaper&sa=D&ust=1542316079285000&usg=AFQjCNEX2DsK5cjPK6Igc4DOKfakLPSBXg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=event&utm_campaign=cisobenelux
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=event&utm_campaign=cisobenelux

ABOUT GITLAB
GitLab is the first single application for the entire DevOps lifecycle. Only GitLab

enables Concurrent DevOps, unlocking organizations from the constraints of today’s

toolchain. GitLab provides unmatched visibility, radical new levels of efficiency and

comprehensive governance to significantly compress the time between planning

a change and monitoring its effect. This makes the software lifecycle 200% faster,

radically improving the speed of business.

GitLab and Concurrent DevOps collapses cycle times by driving higher efficiency

across all stages of the software development lifecycle. For the first time, Product,

Development, QA, Security, and Operations teams can work concurrently in a

single application. There’s no need to integrate and synchronize tools, or waste

time waiting for handoffs. Everyone contributes to a single conversation, instead

of managing multiple threads across disparate tools. And only GitLab gives teams

complete visibility across the lifecycle with a single, trusted source of data to

simplify troubleshooting and drive accountability. All activity is governed by

consistent controls, making security and compliance first-class citizens instead of an

afterthought.

Built on Open Source, GitLab leverages the community contributions of thousands of

developers and millions of users to continuously deliver new DevOps innovations. With

more than 100,000 organizations from startups to global enterprise organizations,

including Ticketmaster, Jaguar Land Rover, NASDAQ, Dish Network and Comcast trust

GitLab to deliver great software at new speeds.

