

WIDE AREA STORAGE FROM QUANTUM

PRESENTED BY: ROBERT RENZONI SR. TECHNOLOGIST <u>ROBERT.RENZONI@QUANTUM.COM</u> 571-213-5699

Quantum Solutions

BIG DATA

DATA PROTECTION

CLOUD

Tiered Solutions and Wide Area Storage

Solutions that help you maximize revenue and results by extracting full value from your data

Deduplication Systems and Tape Libraries

Systems that optimize backup and recovery, simplify management, and lower cost

Virtual Server Backup and Disaster Recovery

All-in-one solutions that protect virtual environments while minimizing impact to servers and storage

Cloud Software and Services

Technology that enables cloud backup and disaster recovery for physical & virtual servers

Central Management, Professional Services, & Global Support

Challenges of Big Data

More data generated and available to extract value over time means more data to store and manage indefinitely

- VALUE of Big Data
 - Power to analyze.
 - Option to monetize or repurpose

VOLUME of Big Data

- 'Free' data collection
- Increasing data granularity
- Content being stored forever

MASSIVE Data Repositories

- Expensive to build, manage long-term
- Siloed, offline and unretrievable

Need a new model that is scalable, affordable–even when online– and manageable and durable for decades to come

Existing Disk Architectures Inefficient at Scale

A new technology is required for large-scale disk archives

- SCALE to PETABYTES and beyond
 - Single-site and/or multi-geo
- PROTECT AGAINST DATA LOSS AFFORDABLY
 - High-density disks are vulnerable to bit errors
 - Hardware RAID inefficient on TB+ drives
 - Storing multiple full copies of data \$\$\$\$

REDUCE OPERATION COSTS

- Administrative/operational costs going up
- Need for self-managing, self-healing
- Need to reduce power and cooling

DURABLE FOR YEARS

Quantum Confidential

Ouantun

MTBF

- SATA disk: look at errors/disk capacity
 - 2 TB disk \rightarrow 16% chance of hard error
 - 4 TB disk \rightarrow 32%chance of hard error
 - ~2015, disks expected to be 8 16 TB $\, \rightarrow$ 100% chance of error during whole disk read

Source: Steve Hetzler, IBM FAST'11

What is Wide Area Storage?

A new disk archive with advanced architectures & algorithms

- Next Generation Object Storage
 - Flat namespace scales indefinitely
 - Both HTTP REST + file system access

Fountain Coding Algorithm

- A type of Forward Error Correction (FEC)
- Mature technology used in communications (e.g. space missions, cell phones)
- Designed with failure in mind assumes components WILL fail
- Multiple copies of encoded data distributed across object storage nodes

How it Works: Data Spreading Algorithm

- Algorithm encodes data in encoded chunks (equations)
- Distributes equations across disks, storage nodes, racks, data centers
- Original data can always be uniquely derived from subset of equations

How it Works: Durability Policies

Durability policies are configurable to give facilities choice

- Durability Policy Example: 20/4
 - 20/4 means: files are spread across 20 drives/nodes/racks
 - Data protected even with as many as 4 failures
- 20/4 policy delivers
 - Five drive failures must occur before any probability of data loss
 - Bit error corruption probability reduced to 0%
- Example durability policies

Wide Area Storage: The Forever Disk Archive

Scales indefinitely

Scales from 500 TB to 100s of PBs via global object namespace High speed file access (GB/sec) Data easily spread across multiple geographically dispersed sites Lower operating & capital costs

Off-the-shelf drives for lower initial cost, less power & cooling required Lower maintenance costs due to higher redundancy TCO reductions of 50-70%

Self-healing & self-migrating

Self-healing: Fifteen 9's of durability ensure data is never lost (better than RAID)

Self- migrating: Innovative algorithms simplify upgrades to new storage technologies

Quantum.

Disk-Based Archives – Where they Fit

More demand for **predictable restore times** of disk archives. But with **reliability** and **scalability** at a **low price**

Introducing Quantum Lattus Wide Area Storage

Q	uantu	IM	
-	-		
	-		
	-	3	
		2 2	
-			
-			
and a set of the	_		

Quantum Lattus: Product Roadmap

Lattus-X — NAS Access (December 2012)

Flexible Access to Durable Wide Area Storage

- Multi-petabyte green ARCHIVE
- CIFS/NFS access via A10
- http REST for apps
- Fast ingest & retrieves
- Low latency
- In memory cache for fast writes
- Limitless scalability per system
 - 400m files per access node
- Archives start at ½ PB

Lattus-M — StorNext Managed (1H 2013)

WIDE AREA STORAGE is nextgeneration object storage—a perfect fit for StorNext

- StorNext policy-based tiering
- Lower latency than tape
- More efficient than mirrored RAID
- Includes Storage Manager license
- 1 Billion Files (per MDC)
- Archive starts at ½ PB
- Virtually unlimited scalability

Quantum. StorNext.

Wide Area Storage: The Forever Disk Archive

Scalable, durable & cost-effective disk archives for Big Data

Scales indefinitely

- Scales from 500 TB to 100s of petabytes
- Data easily dispersed across multiple sites

Lower operating & capital costs

- Lower maintenance due to high durability
- Less power & cooling required

Self-healing & self-migrating

- Fifteen 9's of durability so data is never lost
- Redistribution algorithms simplify upgrades to new storage technologies

QUANTUM WIDE AREA STORAGE – USE CASES

Use Case #1: Affordable, Productive NAS

Global movie producer with masses of NAS clients

Issues:

- Painful/costly data protection
- Growing cost capital and operating
- Administrative headaches of RAID rebuilds and managing replication

- Assured data protection
- <u>Measurably</u> lower cost less storage, lower maintenance, lower power & cooling, lower labor
- Up to fifteen 9s of data availability with no RAID rebuilds; no need for replication

Use Case #2: 100% Policy-Managed Disk

Predictably fast restore times for time-critical mission support

Issues:

- 100% of content must be quickly accessible
 - Need nearline solution without tape latency
- Data growth = unaffordable storage \$\$\$
 - Growth driven by increased data collection
 - Must policy-manage tiers of storage for affordability
- Video assets need to be stored indefinitely

- 100% near line content at affordable cost
- Affordable even to move from tape to disk
 - capital, operating, power & cooling costs
- Data availability and integrity for long-term
- Proven StorNext policy-based management

Use Case #3: Disk Active Archive + Tape Vault

Massive, economical, long-term repositories of geospatial data

StorNext Managed

ssues:

- Data growth = unaffordable storage \$\$\$
 - Growth driven by increased higher resolution formats
 - *Must policy-manage tiers of storage for affordability*
- Video assets need to be stored indefinitely
 - Slower tape speeds for less used content is acceptable
- Digital capture = automatic data protection
 - Data must be backed up immediate to tape

- Active archive at affordable cost
 - 90% Wide Area Storage archive
 - 10% active file system on disk
- Proven StorNext policy-based management
- Tape protects from user/application error
 - Tape also used for offsite vaulting

Use Case #4: Multi-site with Disaster Recovery

Global Film Animation and Visual Effects Studio

Issues:

- Replication is expensive, painful to manage
- Data storage \$\$\$\$
- Need assured data integrity across years of data

- Automatic multi-site protection without replication
- 100% near line content at affordable cost
- Up to fifteen 9s of data availability-durability
- Managed by SN policy for easy administration

Use Case #5: Shared Multi-Site Storage

Defense contractor as service provider for multiple departments

- Combines value of NAS and Policy-Managed Disk
- Shared storage = lowest cost for all multiple sites
- Automatic backup removes
 need for replication
- Option for NAS, StorNext Managed or private cloud

Use Case #6: Multi-Site/Application Shared Data

Shared data access across multiple intelligence applications

- Shared data access extends value of shared storage
- Shared data access = applications across multiple sites have read and write access to shared files
- Option for NAS, StorNext Managed or private cloud

Use Case #7: 2nd or 3rd Tier in the Cloud (2013)

© 2012 Quantum Corporation. Company Confidential. Forward-looking information is based upon multiple assumptions and uncertainties, does not necessarily represent the company's outlook and is for planning purposes only.